Square Root Extended Kernel Recursive Least Squares Algorithm for Nonlinear Channel Equalization
نویسندگان
چکیده
منابع مشابه
Square Root Extended Kernel Recursive Least Squares Algorithm for Nonlinear Channel Equalization
This study presents a square root version of extended kernel recursive least square algorithm. Basically main idea is to overcome the divergence phenomena arise in the computation of weights of the extended kernel recursive least squares algorithm. Numerically stable givens orthogonal transformations are used to obtain the next iteration of the algorithm. The usefulness of the proposed algorith...
متن کاملA novel extended kernel recursive least squares algorithm
In this paper, a novel extended kernel recursive least squares algorithm is proposed combining the kernel recursive least squares algorithm and the Kalman filter or its extensions to estimate or predict signals. Unlike the extended kernel recursive least squares (Ex-KRLS) algorithm proposed by Liu, the state model of our algorithm is still constructed in the original state space and the hidden ...
متن کاملKernel Recursive Least Squares
We present a non-linear kernel-based version of the Recursive Least Squares (RLS) algorithm. Our Kernel-RLS algorithm performs linear regression in the feature space induced by a Mercer kernel, and can therefore be used to recursively construct the minimum meansquared-error regressor. Sparsity (and therefore regularization) of the solution is achieved by an explicit greedy sparsification proces...
متن کاملHierarchic Kernel Recursive Least-Squares
We present a new hierarchic kernel based modeling technique for modeling evenly distributed multidimensional datasets that does not rely on input space sparsification. The presented method reorganizes the typical single-layer kernel based model in a hierarchical structure, such that the weights of a kernel model over each dimension are modeled over the adjacent dimension. We show that the impos...
متن کاملA square root covariance algorithm for constrained recursive least squares estimation
In this contribution, a covariance counterpart is described of the information matrix approach to constrained recursive least squares estimation. Unlike information-type algorithms, covariance algorithms are amenable to parallel implementation, e.g. on processor arrays, and this is also demonstrated. As compared to previously described combined covariance-information algorithms/arrays, the pres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Research Journal of Applied Sciences, Engineering and Technology
سال: 2013
ISSN: 2040-7459,2040-7467
DOI: 10.19026/rjaset.6.3717